We went to great lengths to ensure garble builds are reproducible. This includes how the tool itself works, as its behavior should be the same given the same inputs. However, we made one crucial mistake with the runtime package. It has go:linkname directives pointing at other packages, and some of those pointed packages aren't its dependencies. Imagine two scenarios where garble builds the runtime package: 1) We run "garble build runtime". The way we handle linkname directives calls listPackage on the target package, to obfuscate the target's import path and object name. However, since we only obtained build info of runtime and its deps, calls for some linknames such as listPackage("sync/atomic") will fail. The linkname directive will leave its target untouched. 2) We run "garble build std". Unlike the first scenario, all listPackage calls issued by runtime's linkname directives will succeed, so its linkname directive targets will be obfuscated. At best, this can result in inconsistent builds, depending on how the runtime package was built. At worst, the mismatching object names can result in errors at link time, if the target packages are actually used. The modified test reproduces the worst case scenario reliably, when the fix is reverted: > env GOCACHE=${WORK}/gocache-empty > garble build -a runtime > garble build -o=out_rebuild ./stdimporter [stderr] # test/main/stdimporter JZzQivnl.NtQJu0H3: relocation target JZzQivnl.iioHinYT not defined JZzQivnl.NtQJu0H3.func9: relocation target JZzQivnl.yz5z0NaH not defined JZzQivnl.(*ypvqhKiQ).String: relocation target JZzQivnl.eVciBQeI not defined JZzQivnl.(*ypvqhKiQ).PkgPath: relocation target JZzQivnl.eVciBQeI not defined [...] The fix consists of two steps. First, if we're building the runtime and listPackage fails on a package, that means we ran into scenario 1 above. To avoid the inconsistency, we fill ListedPackages with "go list [...] std". This means we'll always build runtime as described in scenario 2 above. Second, when building packages other than the runtime, we only allow listPackage to succeed if we're listing a dependency of the current package. This ensures we won't run into similar reproducibility bugs in the future. Finally, re-enable test-gotip on CI since this was the last test flake. |
3 years ago | |
---|---|---|
.github | 3 years ago | |
internal | 4 years ago | |
scripts | 4 years ago | |
testdata | 3 years ago | |
.gitattributes | 6 years ago | |
.gitignore | 5 years ago | |
AUTHORS | 5 years ago | |
CHANGELOG.md | 4 years ago | |
CONTRIBUTING.md | 3 years ago | |
LICENSE | 5 years ago | |
README.md | 3 years ago | |
bench_test.go | 4 years ago | |
go.mod | 4 years ago | |
go.sum | 4 years ago | |
hash.go | 3 years ago | |
main.go | 3 years ago | |
main_test.go | 4 years ago | |
position.go | 3 years ago | |
reverse.go | 4 years ago | |
runtime_strip.go | 4 years ago | |
shared.go | 3 years ago |
README.md
garble
go install mvdan.cc/garble@latest
Obfuscate Go code by wrapping the Go toolchain. Requires Go 1.17 or later.
garble build [build flags] [packages]
The tool also supports garble test
to run tests with obfuscated code,
and garble reverse
to de-obfuscate text such as stack traces.
See garble -h
for up to date usage information.
Purpose
Produce a binary that works as well as a regular build, but that has as little information about the original source code as possible.
The tool is designed to be:
- Coupled with
cmd/go
, to support modules and build caching - Deterministic and reproducible, given the same initial source code
- Reversible given the original source, to de-obfuscate panic stack traces
Mechanism
The tool wraps calls to the Go compiler and linker to transform the Go build, in order to:
- Replace as many useful identifiers as possible with short base64 hashes
- Replace package paths with short base64 hashes
- Remove all build and module information
- Strip filenames and shuffle position information
- Strip debugging information and symbol tables via
-ldflags="-w -s"
- Obfuscate literals, if the
-literals
flag is given - Remove extra information, if the
-tiny
flag is given
The tool obfuscates the packages matching GOGARBLE
, a comma-separated list of
glob patterns of module path prefixes, as documented in go help private
.
When GOGARBLE
is empty, it assumes the value of GOPRIVATE
.
When GOPRIVATE
is also empty, then GOGARBLE
assumes the value of the current
module path, to obfuscate all packages under the current module.
Note that commands like garble build
will use the go
version found in your
$PATH
. To use different versions of Go, you can
install them
and set up $PATH
with them. For example, for Go 1.17.1:
$ go install golang.org/dl/go1.17.1@latest
$ go1.17.1 download
$ PATH=$(go1.17.1 env GOROOT)/bin:${PATH} garble build
Literal obfuscation
Using the -literals
flag causes literal expressions such as strings to be
replaced with more complex variants, resolving to the same value at run-time.
This feature is opt-in, as it can cause slow-downs depending on the input code.
Literal expressions used as constants cannot be obfuscated, since they are
resolved at compile time. This includes any expressions part of a const
declaration.
Tiny mode
When the -tiny
flag is passed, extra information is stripped from the resulting
Go binary. This includes line numbers, filenames, and code in the runtime that
prints panics, fatal errors, and trace/debug info. All in all this can make binaries
2-5% smaller in our testing, as well as prevent extracting some more information.
With this flag, no panics or fatal runtime errors will ever be printed, but they
can still be handled internally with recover
as normal. In addition, the
GODEBUG
environmental variable will be ignored.
Note that this flag can make debugging crashes harder, as a panic will simply
exit the entire program without printing a stack trace, and all source code
positions are set to line 1. Similarly, garble reverse
is generally not useful
in this mode.
Speed
garble build
should take about twice as long as go build
, as it needs to
complete two builds. The original build, to be able to load and type-check the
input code, and then the obfuscated build.
Garble obfuscates one package at a time, mirroring how Go compiles one package
at a time. This allows Garble to fully support Go's build cache; incremental
garble build
calls should only re-build and re-obfuscate modified code.
Determinism and seeds
Just like Go, garble builds are deterministic and reproducible if the inputs
remain the same: the version of Go, the version of Garble, and the input code.
This has significant benefits, such as caching builds or being able to use
garble reverse
to de-obfuscate stack traces.
However, it also means that an input package will be obfuscated in exactly the
same way if none of those inputs change. If you want two builds of your program
to be entirely different, you can use -seed
to provide a new seed for the
entire build, which will cause a full rebuild.
If any open source packages are being obfuscated, providing a custom seed can also provide extra protection. It could be possible to guess the versions of Go and garble given how a public package was obfuscated without a seed.
Caveats
Most of these can improve with time and effort. The purpose of this section is to document the current shortcomings of this tool.
-
Exported methods are never obfuscated at the moment, since they could be required by interfaces. This area is a work in progress; see #3.
-
Garble aims to automatically detect which Go types are used with reflection, as obfuscating those types might break your program. Note that Garble obfuscates one package at a time, so if your reflection code inspects a type from an imported package, and your program broke, you may need to add a "hint" in the imported package:
type Message struct { Command string Args string } // Never obfuscate the Message type. var _ = reflect.TypeOf(Message{})
-
Go declarations exported for cgo via
//export
are not obfuscated. -
Go plugins are not currently supported; see #87.
Contributing
We welcome new contributors. If you would like to contribute, see CONTRIBUTING.md as a starting point.