You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
	
	
		
			871 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
		
		
			
		
	
	
			871 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
| 
											12 years ago
										 | /* Copyright 2008, Google Inc.
 | ||
|  |  * All rights reserved. | ||
|  |  * | ||
|  |  * Redistribution and use in source and binary forms, with or without | ||
|  |  * modification, are permitted provided that the following conditions are | ||
|  |  * met: | ||
|  |  * | ||
|  |  *     * Redistributions of source code must retain the above copyright | ||
|  |  * notice, this list of conditions and the following disclaimer. | ||
|  |  *     * Redistributions in binary form must reproduce the above | ||
|  |  * copyright notice, this list of conditions and the following disclaimer | ||
|  |  * in the documentation and/or other materials provided with the | ||
|  |  * distribution. | ||
|  |  *     * Neither the name of Google Inc. nor the names of its | ||
|  |  * contributors may be used to endorse or promote products derived from | ||
|  |  * this software without specific prior written permission. | ||
|  |  * | ||
|  |  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||
|  |  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||
|  |  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||
|  |  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | ||
|  |  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
|  |  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | ||
|  |  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | ||
|  |  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | ||
|  |  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
|  |  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
|  |  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
|  |  * | ||
|  |  * curve25519-donna: Curve25519 elliptic curve, public key function | ||
|  |  * | ||
|  |  * http://code.google.com/p/curve25519-donna/
 | ||
|  |  * | ||
|  |  * Adam Langley <agl@imperialviolet.org> | ||
|  |  * | ||
|  |  * Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to> | ||
|  |  * | ||
|  |  * More information about curve25519 can be found here | ||
|  |  *   http://cr.yp.to/ecdh.html
 | ||
|  |  * | ||
|  |  * djb's sample implementation of curve25519 is written in a special assembly | ||
|  |  * language called qhasm and uses the floating point registers. | ||
|  |  * | ||
|  |  * This is, almost, a clean room reimplementation from the curve25519 paper. It | ||
|  |  * uses many of the tricks described therein. Only the crecip function is taken | ||
| 
											11 years ago
										 |  * from the sample implementation. */ | ||
| 
											12 years ago
										 | 
 | ||
|  | #include <string.h>
 | ||
|  | #include <stdint.h>
 | ||
|  | 
 | ||
|  | #ifdef _MSC_VER
 | ||
|  | #define inline __inline
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | typedef uint8_t u8; | ||
|  | typedef int32_t s32; | ||
|  | typedef int64_t limb; | ||
|  | 
 | ||
|  | /* Field element representation:
 | ||
|  |  * | ||
|  |  * Field elements are written as an array of signed, 64-bit limbs, least | ||
|  |  * significant first. The value of the field element is: | ||
|  |  *   x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ... | ||
|  |  * | ||
| 
											11 years ago
										 |  * i.e. the limbs are 26, 25, 26, 25, ... bits wide. */ | ||
| 
											12 years ago
										 | 
 | ||
|  | /* Sum two numbers: output += in */ | ||
|  | static void fsum(limb *output, const limb *in) { | ||
|  |   unsigned i; | ||
|  |   for (i = 0; i < 10; i += 2) { | ||
| 
											11 years ago
										 |     output[0+i] = output[0+i] + in[0+i]; | ||
|  |     output[1+i] = output[1+i] + in[1+i]; | ||
| 
											12 years ago
										 |   } | ||
|  | } | ||
|  | 
 | ||
|  | /* Find the difference of two numbers: output = in - output
 | ||
| 
											11 years ago
										 |  * (note the order of the arguments!). */ | ||
| 
											12 years ago
										 | static void fdifference(limb *output, const limb *in) { | ||
|  |   unsigned i; | ||
|  |   for (i = 0; i < 10; ++i) { | ||
| 
											11 years ago
										 |     output[i] = in[i] - output[i]; | ||
| 
											12 years ago
										 |   } | ||
|  | } | ||
|  | 
 | ||
|  | /* Multiply a number by a scalar: output = in * scalar */ | ||
|  | static void fscalar_product(limb *output, const limb *in, const limb scalar) { | ||
|  |   unsigned i; | ||
|  |   for (i = 0; i < 10; ++i) { | ||
|  |     output[i] = in[i] * scalar; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | /* Multiply two numbers: output = in2 * in
 | ||
|  |  * | ||
|  |  * output must be distinct to both inputs. The inputs are reduced coefficient | ||
|  |  * form, the output is not. | ||
| 
											11 years ago
										 |  * | ||
|  |  * output[x] <= 14 * the largest product of the input limbs. */ | ||
| 
											12 years ago
										 | static void fproduct(limb *output, const limb *in2, const limb *in) { | ||
|  |   output[0] =       ((limb) ((s32) in2[0])) * ((s32) in[0]); | ||
|  |   output[1] =       ((limb) ((s32) in2[0])) * ((s32) in[1]) + | ||
|  |                     ((limb) ((s32) in2[1])) * ((s32) in[0]); | ||
|  |   output[2] =  2 *  ((limb) ((s32) in2[1])) * ((s32) in[1]) + | ||
|  |                     ((limb) ((s32) in2[0])) * ((s32) in[2]) + | ||
|  |                     ((limb) ((s32) in2[2])) * ((s32) in[0]); | ||
|  |   output[3] =       ((limb) ((s32) in2[1])) * ((s32) in[2]) + | ||
|  |                     ((limb) ((s32) in2[2])) * ((s32) in[1]) + | ||
|  |                     ((limb) ((s32) in2[0])) * ((s32) in[3]) + | ||
|  |                     ((limb) ((s32) in2[3])) * ((s32) in[0]); | ||
|  |   output[4] =       ((limb) ((s32) in2[2])) * ((s32) in[2]) + | ||
|  |                2 * (((limb) ((s32) in2[1])) * ((s32) in[3]) + | ||
|  |                     ((limb) ((s32) in2[3])) * ((s32) in[1])) + | ||
|  |                     ((limb) ((s32) in2[0])) * ((s32) in[4]) + | ||
|  |                     ((limb) ((s32) in2[4])) * ((s32) in[0]); | ||
|  |   output[5] =       ((limb) ((s32) in2[2])) * ((s32) in[3]) + | ||
|  |                     ((limb) ((s32) in2[3])) * ((s32) in[2]) + | ||
|  |                     ((limb) ((s32) in2[1])) * ((s32) in[4]) + | ||
|  |                     ((limb) ((s32) in2[4])) * ((s32) in[1]) + | ||
|  |                     ((limb) ((s32) in2[0])) * ((s32) in[5]) + | ||
|  |                     ((limb) ((s32) in2[5])) * ((s32) in[0]); | ||
|  |   output[6] =  2 * (((limb) ((s32) in2[3])) * ((s32) in[3]) + | ||
|  |                     ((limb) ((s32) in2[1])) * ((s32) in[5]) + | ||
|  |                     ((limb) ((s32) in2[5])) * ((s32) in[1])) + | ||
|  |                     ((limb) ((s32) in2[2])) * ((s32) in[4]) + | ||
|  |                     ((limb) ((s32) in2[4])) * ((s32) in[2]) + | ||
|  |                     ((limb) ((s32) in2[0])) * ((s32) in[6]) + | ||
|  |                     ((limb) ((s32) in2[6])) * ((s32) in[0]); | ||
|  |   output[7] =       ((limb) ((s32) in2[3])) * ((s32) in[4]) + | ||
|  |                     ((limb) ((s32) in2[4])) * ((s32) in[3]) + | ||
|  |                     ((limb) ((s32) in2[2])) * ((s32) in[5]) + | ||
|  |                     ((limb) ((s32) in2[5])) * ((s32) in[2]) + | ||
|  |                     ((limb) ((s32) in2[1])) * ((s32) in[6]) + | ||
|  |                     ((limb) ((s32) in2[6])) * ((s32) in[1]) + | ||
|  |                     ((limb) ((s32) in2[0])) * ((s32) in[7]) + | ||
|  |                     ((limb) ((s32) in2[7])) * ((s32) in[0]); | ||
|  |   output[8] =       ((limb) ((s32) in2[4])) * ((s32) in[4]) + | ||
|  |                2 * (((limb) ((s32) in2[3])) * ((s32) in[5]) + | ||
|  |                     ((limb) ((s32) in2[5])) * ((s32) in[3]) + | ||
|  |                     ((limb) ((s32) in2[1])) * ((s32) in[7]) + | ||
|  |                     ((limb) ((s32) in2[7])) * ((s32) in[1])) + | ||
|  |                     ((limb) ((s32) in2[2])) * ((s32) in[6]) + | ||
|  |                     ((limb) ((s32) in2[6])) * ((s32) in[2]) + | ||
|  |                     ((limb) ((s32) in2[0])) * ((s32) in[8]) + | ||
|  |                     ((limb) ((s32) in2[8])) * ((s32) in[0]); | ||
|  |   output[9] =       ((limb) ((s32) in2[4])) * ((s32) in[5]) + | ||
|  |                     ((limb) ((s32) in2[5])) * ((s32) in[4]) + | ||
|  |                     ((limb) ((s32) in2[3])) * ((s32) in[6]) + | ||
|  |                     ((limb) ((s32) in2[6])) * ((s32) in[3]) + | ||
|  |                     ((limb) ((s32) in2[2])) * ((s32) in[7]) + | ||
|  |                     ((limb) ((s32) in2[7])) * ((s32) in[2]) + | ||
|  |                     ((limb) ((s32) in2[1])) * ((s32) in[8]) + | ||
|  |                     ((limb) ((s32) in2[8])) * ((s32) in[1]) + | ||
|  |                     ((limb) ((s32) in2[0])) * ((s32) in[9]) + | ||
|  |                     ((limb) ((s32) in2[9])) * ((s32) in[0]); | ||
|  |   output[10] = 2 * (((limb) ((s32) in2[5])) * ((s32) in[5]) + | ||
|  |                     ((limb) ((s32) in2[3])) * ((s32) in[7]) + | ||
|  |                     ((limb) ((s32) in2[7])) * ((s32) in[3]) + | ||
|  |                     ((limb) ((s32) in2[1])) * ((s32) in[9]) + | ||
|  |                     ((limb) ((s32) in2[9])) * ((s32) in[1])) + | ||
|  |                     ((limb) ((s32) in2[4])) * ((s32) in[6]) + | ||
|  |                     ((limb) ((s32) in2[6])) * ((s32) in[4]) + | ||
|  |                     ((limb) ((s32) in2[2])) * ((s32) in[8]) + | ||
|  |                     ((limb) ((s32) in2[8])) * ((s32) in[2]); | ||
|  |   output[11] =      ((limb) ((s32) in2[5])) * ((s32) in[6]) + | ||
|  |                     ((limb) ((s32) in2[6])) * ((s32) in[5]) + | ||
|  |                     ((limb) ((s32) in2[4])) * ((s32) in[7]) + | ||
|  |                     ((limb) ((s32) in2[7])) * ((s32) in[4]) + | ||
|  |                     ((limb) ((s32) in2[3])) * ((s32) in[8]) + | ||
|  |                     ((limb) ((s32) in2[8])) * ((s32) in[3]) + | ||
|  |                     ((limb) ((s32) in2[2])) * ((s32) in[9]) + | ||
|  |                     ((limb) ((s32) in2[9])) * ((s32) in[2]); | ||
|  |   output[12] =      ((limb) ((s32) in2[6])) * ((s32) in[6]) + | ||
|  |                2 * (((limb) ((s32) in2[5])) * ((s32) in[7]) + | ||
|  |                     ((limb) ((s32) in2[7])) * ((s32) in[5]) + | ||
|  |                     ((limb) ((s32) in2[3])) * ((s32) in[9]) + | ||
|  |                     ((limb) ((s32) in2[9])) * ((s32) in[3])) + | ||
|  |                     ((limb) ((s32) in2[4])) * ((s32) in[8]) + | ||
|  |                     ((limb) ((s32) in2[8])) * ((s32) in[4]); | ||
|  |   output[13] =      ((limb) ((s32) in2[6])) * ((s32) in[7]) + | ||
|  |                     ((limb) ((s32) in2[7])) * ((s32) in[6]) + | ||
|  |                     ((limb) ((s32) in2[5])) * ((s32) in[8]) + | ||
|  |                     ((limb) ((s32) in2[8])) * ((s32) in[5]) + | ||
|  |                     ((limb) ((s32) in2[4])) * ((s32) in[9]) + | ||
|  |                     ((limb) ((s32) in2[9])) * ((s32) in[4]); | ||
|  |   output[14] = 2 * (((limb) ((s32) in2[7])) * ((s32) in[7]) + | ||
|  |                     ((limb) ((s32) in2[5])) * ((s32) in[9]) + | ||
|  |                     ((limb) ((s32) in2[9])) * ((s32) in[5])) + | ||
|  |                     ((limb) ((s32) in2[6])) * ((s32) in[8]) + | ||
|  |                     ((limb) ((s32) in2[8])) * ((s32) in[6]); | ||
|  |   output[15] =      ((limb) ((s32) in2[7])) * ((s32) in[8]) + | ||
|  |                     ((limb) ((s32) in2[8])) * ((s32) in[7]) + | ||
|  |                     ((limb) ((s32) in2[6])) * ((s32) in[9]) + | ||
|  |                     ((limb) ((s32) in2[9])) * ((s32) in[6]); | ||
|  |   output[16] =      ((limb) ((s32) in2[8])) * ((s32) in[8]) + | ||
|  |                2 * (((limb) ((s32) in2[7])) * ((s32) in[9]) + | ||
|  |                     ((limb) ((s32) in2[9])) * ((s32) in[7])); | ||
|  |   output[17] =      ((limb) ((s32) in2[8])) * ((s32) in[9]) + | ||
|  |                     ((limb) ((s32) in2[9])) * ((s32) in[8]); | ||
|  |   output[18] = 2 *  ((limb) ((s32) in2[9])) * ((s32) in[9]); | ||
|  | } | ||
|  | 
 | ||
| 
											11 years ago
										 | /* Reduce a long form to a short form by taking the input mod 2^255 - 19.
 | ||
|  |  * | ||
|  |  * On entry: |output[i]| < 14*2^54 | ||
|  |  * On exit: |output[0..8]| < 280*2^54 */ | ||
| 
											12 years ago
										 | static void freduce_degree(limb *output) { | ||
| 
											11 years ago
										 |   /* Each of these shifts and adds ends up multiplying the value by 19.
 | ||
|  |    * | ||
|  |    * For output[0..8], the absolute entry value is < 14*2^54 and we add, at | ||
|  |    * most, 19*14*2^54 thus, on exit, |output[0..8]| < 280*2^54. */ | ||
| 
											12 years ago
										 |   output[8] += output[18] << 4; | ||
|  |   output[8] += output[18] << 1; | ||
|  |   output[8] += output[18]; | ||
|  |   output[7] += output[17] << 4; | ||
|  |   output[7] += output[17] << 1; | ||
|  |   output[7] += output[17]; | ||
|  |   output[6] += output[16] << 4; | ||
|  |   output[6] += output[16] << 1; | ||
|  |   output[6] += output[16]; | ||
|  |   output[5] += output[15] << 4; | ||
|  |   output[5] += output[15] << 1; | ||
|  |   output[5] += output[15]; | ||
|  |   output[4] += output[14] << 4; | ||
|  |   output[4] += output[14] << 1; | ||
|  |   output[4] += output[14]; | ||
|  |   output[3] += output[13] << 4; | ||
|  |   output[3] += output[13] << 1; | ||
|  |   output[3] += output[13]; | ||
|  |   output[2] += output[12] << 4; | ||
|  |   output[2] += output[12] << 1; | ||
|  |   output[2] += output[12]; | ||
|  |   output[1] += output[11] << 4; | ||
|  |   output[1] += output[11] << 1; | ||
|  |   output[1] += output[11]; | ||
|  |   output[0] += output[10] << 4; | ||
|  |   output[0] += output[10] << 1; | ||
|  |   output[0] += output[10]; | ||
|  | } | ||
|  | 
 | ||
|  | #if (-1 & 3) != 3
 | ||
|  | #error "This code only works on a two's complement system"
 | ||
|  | #endif
 | ||
|  | 
 | ||
| 
											11 years ago
										 | /* return v / 2^26, using only shifts and adds.
 | ||
|  |  * | ||
|  |  * On entry: v can take any value. */ | ||
| 
											12 years ago
										 | static inline limb | ||
|  | div_by_2_26(const limb v) | ||
|  | { | ||
| 
											11 years ago
										 |   /* High word of v; no shift needed. */ | ||
| 
											12 years ago
										 |   const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32); | ||
|  |   /* Set to all 1s if v was negative; else set to 0s. */ | ||
|  |   const int32_t sign = ((int32_t) highword) >> 31; | ||
|  |   /* Set to 0x3ffffff if v was negative; else set to 0. */ | ||
|  |   const int32_t roundoff = ((uint32_t) sign) >> 6; | ||
|  |   /* Should return v / (1<<26) */ | ||
|  |   return (v + roundoff) >> 26; | ||
|  | } | ||
|  | 
 | ||
| 
											11 years ago
										 | /* return v / (2^25), using only shifts and adds.
 | ||
|  |  * | ||
|  |  * On entry: v can take any value. */ | ||
| 
											12 years ago
										 | static inline limb | ||
|  | div_by_2_25(const limb v) | ||
|  | { | ||
|  |   /* High word of v; no shift needed*/ | ||
|  |   const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32); | ||
|  |   /* Set to all 1s if v was negative; else set to 0s. */ | ||
|  |   const int32_t sign = ((int32_t) highword) >> 31; | ||
|  |   /* Set to 0x1ffffff if v was negative; else set to 0. */ | ||
|  |   const int32_t roundoff = ((uint32_t) sign) >> 7; | ||
|  |   /* Should return v / (1<<25) */ | ||
|  |   return (v + roundoff) >> 25; | ||
|  | } | ||
|  | 
 | ||
| 
											11 years ago
										 | /* return v / (2^25), using only shifts and adds.
 | ||
|  |  * | ||
|  |  * On entry: v can take any value. */ | ||
| 
											12 years ago
										 | static inline s32 | ||
|  | div_s32_by_2_25(const s32 v) | ||
|  | { | ||
|  |    const s32 roundoff = ((uint32_t)(v >> 31)) >> 7; | ||
|  |    return (v + roundoff) >> 25; | ||
|  | } | ||
|  | 
 | ||
|  | /* Reduce all coefficients of the short form input so that |x| < 2^26.
 | ||
|  |  * | ||
| 
											11 years ago
										 |  * On entry: |output[i]| < 280*2^54 */ | ||
| 
											12 years ago
										 | static void freduce_coefficients(limb *output) { | ||
|  |   unsigned i; | ||
|  | 
 | ||
|  |   output[10] = 0; | ||
|  | 
 | ||
|  |   for (i = 0; i < 10; i += 2) { | ||
|  |     limb over = div_by_2_26(output[i]); | ||
| 
											11 years ago
										 |     /* The entry condition (that |output[i]| < 280*2^54) means that over is, at
 | ||
|  |      * most, 280*2^28 in the first iteration of this loop. This is added to the | ||
|  |      * next limb and we can approximate the resulting bound of that limb by | ||
|  |      * 281*2^54. */ | ||
| 
											12 years ago
										 |     output[i] -= over << 26; | ||
|  |     output[i+1] += over; | ||
|  | 
 | ||
| 
											11 years ago
										 |     /* For the first iteration, |output[i+1]| < 281*2^54, thus |over| <
 | ||
|  |      * 281*2^29. When this is added to the next limb, the resulting bound can | ||
|  |      * be approximated as 281*2^54. | ||
|  |      * | ||
|  |      * For subsequent iterations of the loop, 281*2^54 remains a conservative | ||
|  |      * bound and no overflow occurs. */ | ||
| 
											12 years ago
										 |     over = div_by_2_25(output[i+1]); | ||
|  |     output[i+1] -= over << 25; | ||
|  |     output[i+2] += over; | ||
|  |   } | ||
| 
											11 years ago
										 |   /* Now |output[10]| < 281*2^29 and all other coefficients are reduced. */ | ||
| 
											12 years ago
										 |   output[0] += output[10] << 4; | ||
|  |   output[0] += output[10] << 1; | ||
|  |   output[0] += output[10]; | ||
|  | 
 | ||
|  |   output[10] = 0; | ||
|  | 
 | ||
| 
											11 years ago
										 |   /* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29
 | ||
|  |    * So |over| will be no more than 2^16. */ | ||
| 
											12 years ago
										 |   { | ||
|  |     limb over = div_by_2_26(output[0]); | ||
|  |     output[0] -= over << 26; | ||
|  |     output[1] += over; | ||
|  |   } | ||
|  | 
 | ||
| 
											11 years ago
										 |   /* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The
 | ||
|  |    * bound on |output[1]| is sufficient to meet our needs. */ | ||
| 
											12 years ago
										 | } | ||
|  | 
 | ||
|  | /* A helpful wrapper around fproduct: output = in * in2.
 | ||
|  |  * | ||
| 
											11 years ago
										 |  * On entry: |in[i]| < 2^27 and |in2[i]| < 2^27. | ||
|  |  * | ||
|  |  * output must be distinct to both inputs. The output is reduced degree | ||
|  |  * (indeed, one need only provide storage for 10 limbs) and |output[i]| < 2^26. */ | ||
| 
											12 years ago
										 | static void | ||
|  | fmul(limb *output, const limb *in, const limb *in2) { | ||
|  |   limb t[19]; | ||
|  |   fproduct(t, in, in2); | ||
| 
											11 years ago
										 |   /* |t[i]| < 14*2^54 */ | ||
| 
											12 years ago
										 |   freduce_degree(t); | ||
|  |   freduce_coefficients(t); | ||
| 
											11 years ago
										 |   /* |t[i]| < 2^26 */ | ||
| 
											12 years ago
										 |   memcpy(output, t, sizeof(limb) * 10); | ||
|  | } | ||
|  | 
 | ||
| 
											11 years ago
										 | /* Square a number: output = in**2
 | ||
|  |  * | ||
|  |  * output must be distinct from the input. The inputs are reduced coefficient | ||
|  |  * form, the output is not. | ||
|  |  * | ||
|  |  * output[x] <= 14 * the largest product of the input limbs. */ | ||
| 
											12 years ago
										 | static void fsquare_inner(limb *output, const limb *in) { | ||
|  |   output[0] =       ((limb) ((s32) in[0])) * ((s32) in[0]); | ||
|  |   output[1] =  2 *  ((limb) ((s32) in[0])) * ((s32) in[1]); | ||
|  |   output[2] =  2 * (((limb) ((s32) in[1])) * ((s32) in[1]) + | ||
|  |                     ((limb) ((s32) in[0])) * ((s32) in[2])); | ||
|  |   output[3] =  2 * (((limb) ((s32) in[1])) * ((s32) in[2]) + | ||
|  |                     ((limb) ((s32) in[0])) * ((s32) in[3])); | ||
|  |   output[4] =       ((limb) ((s32) in[2])) * ((s32) in[2]) + | ||
|  |                4 *  ((limb) ((s32) in[1])) * ((s32) in[3]) + | ||
|  |                2 *  ((limb) ((s32) in[0])) * ((s32) in[4]); | ||
|  |   output[5] =  2 * (((limb) ((s32) in[2])) * ((s32) in[3]) + | ||
|  |                     ((limb) ((s32) in[1])) * ((s32) in[4]) + | ||
|  |                     ((limb) ((s32) in[0])) * ((s32) in[5])); | ||
|  |   output[6] =  2 * (((limb) ((s32) in[3])) * ((s32) in[3]) + | ||
|  |                     ((limb) ((s32) in[2])) * ((s32) in[4]) + | ||
|  |                     ((limb) ((s32) in[0])) * ((s32) in[6]) + | ||
|  |                2 *  ((limb) ((s32) in[1])) * ((s32) in[5])); | ||
|  |   output[7] =  2 * (((limb) ((s32) in[3])) * ((s32) in[4]) + | ||
|  |                     ((limb) ((s32) in[2])) * ((s32) in[5]) + | ||
|  |                     ((limb) ((s32) in[1])) * ((s32) in[6]) + | ||
|  |                     ((limb) ((s32) in[0])) * ((s32) in[7])); | ||
|  |   output[8] =       ((limb) ((s32) in[4])) * ((s32) in[4]) + | ||
|  |                2 * (((limb) ((s32) in[2])) * ((s32) in[6]) + | ||
|  |                     ((limb) ((s32) in[0])) * ((s32) in[8]) + | ||
|  |                2 * (((limb) ((s32) in[1])) * ((s32) in[7]) + | ||
|  |                     ((limb) ((s32) in[3])) * ((s32) in[5]))); | ||
|  |   output[9] =  2 * (((limb) ((s32) in[4])) * ((s32) in[5]) + | ||
|  |                     ((limb) ((s32) in[3])) * ((s32) in[6]) + | ||
|  |                     ((limb) ((s32) in[2])) * ((s32) in[7]) + | ||
|  |                     ((limb) ((s32) in[1])) * ((s32) in[8]) + | ||
|  |                     ((limb) ((s32) in[0])) * ((s32) in[9])); | ||
|  |   output[10] = 2 * (((limb) ((s32) in[5])) * ((s32) in[5]) + | ||
|  |                     ((limb) ((s32) in[4])) * ((s32) in[6]) + | ||
|  |                     ((limb) ((s32) in[2])) * ((s32) in[8]) + | ||
|  |                2 * (((limb) ((s32) in[3])) * ((s32) in[7]) + | ||
|  |                     ((limb) ((s32) in[1])) * ((s32) in[9]))); | ||
|  |   output[11] = 2 * (((limb) ((s32) in[5])) * ((s32) in[6]) + | ||
|  |                     ((limb) ((s32) in[4])) * ((s32) in[7]) + | ||
|  |                     ((limb) ((s32) in[3])) * ((s32) in[8]) + | ||
|  |                     ((limb) ((s32) in[2])) * ((s32) in[9])); | ||
|  |   output[12] =      ((limb) ((s32) in[6])) * ((s32) in[6]) + | ||
|  |                2 * (((limb) ((s32) in[4])) * ((s32) in[8]) + | ||
|  |                2 * (((limb) ((s32) in[5])) * ((s32) in[7]) + | ||
|  |                     ((limb) ((s32) in[3])) * ((s32) in[9]))); | ||
|  |   output[13] = 2 * (((limb) ((s32) in[6])) * ((s32) in[7]) + | ||
|  |                     ((limb) ((s32) in[5])) * ((s32) in[8]) + | ||
|  |                     ((limb) ((s32) in[4])) * ((s32) in[9])); | ||
|  |   output[14] = 2 * (((limb) ((s32) in[7])) * ((s32) in[7]) + | ||
|  |                     ((limb) ((s32) in[6])) * ((s32) in[8]) + | ||
|  |                2 *  ((limb) ((s32) in[5])) * ((s32) in[9])); | ||
|  |   output[15] = 2 * (((limb) ((s32) in[7])) * ((s32) in[8]) + | ||
|  |                     ((limb) ((s32) in[6])) * ((s32) in[9])); | ||
|  |   output[16] =      ((limb) ((s32) in[8])) * ((s32) in[8]) + | ||
|  |                4 *  ((limb) ((s32) in[7])) * ((s32) in[9]); | ||
|  |   output[17] = 2 *  ((limb) ((s32) in[8])) * ((s32) in[9]); | ||
|  |   output[18] = 2 *  ((limb) ((s32) in[9])) * ((s32) in[9]); | ||
|  | } | ||
|  | 
 | ||
| 
											11 years ago
										 | /* fsquare sets output = in^2.
 | ||
|  |  * | ||
|  |  * On entry: The |in| argument is in reduced coefficients form and |in[i]| < | ||
|  |  * 2^27. | ||
|  |  * | ||
|  |  * On exit: The |output| argument is in reduced coefficients form (indeed, one | ||
|  |  * need only provide storage for 10 limbs) and |out[i]| < 2^26. */ | ||
| 
											12 years ago
										 | static void | ||
|  | fsquare(limb *output, const limb *in) { | ||
|  |   limb t[19]; | ||
|  |   fsquare_inner(t, in); | ||
| 
											11 years ago
										 |   /* |t[i]| < 14*2^54 because the largest product of two limbs will be <
 | ||
|  |    * 2^(27+27) and fsquare_inner adds together, at most, 14 of those | ||
|  |    * products. */ | ||
| 
											12 years ago
										 |   freduce_degree(t); | ||
|  |   freduce_coefficients(t); | ||
| 
											11 years ago
										 |   /* |t[i]| < 2^26 */ | ||
| 
											12 years ago
										 |   memcpy(output, t, sizeof(limb) * 10); | ||
|  | } | ||
|  | 
 | ||
|  | /* Take a little-endian, 32-byte number and expand it into polynomial form */ | ||
|  | static void | ||
|  | fexpand(limb *output, const u8 *input) { | ||
|  | #define F(n,start,shift,mask) \
 | ||
|  |   output[n] = ((((limb) input[start + 0]) | \ | ||
|  |                 ((limb) input[start + 1]) << 8 | \ | ||
|  |                 ((limb) input[start + 2]) << 16 | \ | ||
|  |                 ((limb) input[start + 3]) << 24) >> shift) & mask; | ||
|  |   F(0, 0, 0, 0x3ffffff); | ||
|  |   F(1, 3, 2, 0x1ffffff); | ||
|  |   F(2, 6, 3, 0x3ffffff); | ||
|  |   F(3, 9, 5, 0x1ffffff); | ||
|  |   F(4, 12, 6, 0x3ffffff); | ||
|  |   F(5, 16, 0, 0x1ffffff); | ||
|  |   F(6, 19, 1, 0x3ffffff); | ||
|  |   F(7, 22, 3, 0x1ffffff); | ||
|  |   F(8, 25, 4, 0x3ffffff); | ||
| 
											11 years ago
										 |   F(9, 28, 6, 0x1ffffff); | ||
| 
											12 years ago
										 | #undef F
 | ||
|  | } | ||
|  | 
 | ||
|  | #if (-32 >> 1) != -16
 | ||
|  | #error "This code only works when >> does sign-extension on negative numbers"
 | ||
|  | #endif
 | ||
|  | 
 | ||
| 
											11 years ago
										 | /* s32_eq returns 0xffffffff iff a == b and zero otherwise. */ | ||
|  | static s32 s32_eq(s32 a, s32 b) { | ||
|  |   a = ~(a ^ b); | ||
|  |   a &= a << 16; | ||
|  |   a &= a << 8; | ||
|  |   a &= a << 4; | ||
|  |   a &= a << 2; | ||
|  |   a &= a << 1; | ||
|  |   return a >> 31; | ||
|  | } | ||
|  | 
 | ||
|  | /* s32_gte returns 0xffffffff if a >= b and zero otherwise, where a and b are
 | ||
|  |  * both non-negative. */ | ||
|  | static s32 s32_gte(s32 a, s32 b) { | ||
|  |   a -= b; | ||
|  |   /* a >= 0 iff a >= b. */ | ||
|  |   return ~(a >> 31); | ||
|  | } | ||
|  | 
 | ||
| 
											12 years ago
										 | /* Take a fully reduced polynomial form number and contract it into a
 | ||
| 
											11 years ago
										 |  * little-endian, 32-byte array. | ||
|  |  * | ||
|  |  * On entry: |input_limbs[i]| < 2^26 */ | ||
| 
											12 years ago
										 | static void | ||
| 
											11 years ago
										 | fcontract(u8 *output, limb *input_limbs) { | ||
| 
											12 years ago
										 |   int i; | ||
|  |   int j; | ||
| 
											11 years ago
										 |   s32 input[10]; | ||
|  |   s32 mask; | ||
|  | 
 | ||
|  |   /* |input_limbs[i]| < 2^26, so it's valid to convert to an s32. */ | ||
|  |   for (i = 0; i < 10; i++) { | ||
|  |     input[i] = input_limbs[i]; | ||
|  |   } | ||
| 
											12 years ago
										 | 
 | ||
|  |   for (j = 0; j < 2; ++j) { | ||
|  |     for (i = 0; i < 9; ++i) { | ||
|  |       if ((i & 1) == 1) { | ||
| 
											11 years ago
										 |         /* This calculation is a time-invariant way to make input[i]
 | ||
|  |          * non-negative by borrowing from the next-larger limb. */ | ||
|  |         const s32 mask = input[i] >> 31; | ||
|  |         const s32 carry = -((input[i] & mask) >> 25); | ||
|  |         input[i] = input[i] + (carry << 25); | ||
|  |         input[i+1] = input[i+1] - carry; | ||
| 
											12 years ago
										 |       } else { | ||
| 
											11 years ago
										 |         const s32 mask = input[i] >> 31; | ||
|  |         const s32 carry = -((input[i] & mask) >> 26); | ||
|  |         input[i] = input[i] + (carry << 26); | ||
|  |         input[i+1] = input[i+1] - carry; | ||
| 
											12 years ago
										 |       } | ||
|  |     } | ||
| 
											11 years ago
										 | 
 | ||
|  |     /* There's no greater limb for input[9] to borrow from, but we can multiply
 | ||
|  |      * by 19 and borrow from input[0], which is valid mod 2^255-19. */ | ||
| 
											12 years ago
										 |     { | ||
| 
											11 years ago
										 |       const s32 mask = input[9] >> 31; | ||
|  |       const s32 carry = -((input[9] & mask) >> 25); | ||
|  |       input[9] = input[9] + (carry << 25); | ||
|  |       input[0] = input[0] - (carry * 19); | ||
| 
											12 years ago
										 |     } | ||
| 
											11 years ago
										 | 
 | ||
|  |     /* After the first iteration, input[1..9] are non-negative and fit within
 | ||
|  |      * 25 or 26 bits, depending on position. However, input[0] may be | ||
|  |      * negative. */ | ||
| 
											12 years ago
										 |   } | ||
|  | 
 | ||
|  |   /* The first borrow-propagation pass above ended with every limb
 | ||
|  |      except (possibly) input[0] non-negative. | ||
|  | 
 | ||
| 
											11 years ago
										 |      If input[0] was negative after the first pass, then it was because of a | ||
|  |      carry from input[9]. On entry, input[9] < 2^26 so the carry was, at most, | ||
|  |      one, since (2**26-1) >> 25 = 1. Thus input[0] >= -19. | ||
|  | 
 | ||
|  |      In the second pass, each limb is decreased by at most one. Thus the second | ||
|  |      borrow-propagation pass could only have wrapped around to decrease | ||
|  |      input[0] again if the first pass left input[0] negative *and* input[1] | ||
|  |      through input[9] were all zero.  In that case, input[1] is now 2^25 - 1, | ||
|  |      and this last borrow-propagation step will leave input[1] non-negative. */ | ||
| 
											12 years ago
										 |   { | ||
| 
											11 years ago
										 |     const s32 mask = input[0] >> 31; | ||
|  |     const s32 carry = -((input[0] & mask) >> 26); | ||
|  |     input[0] = input[0] + (carry << 26); | ||
|  |     input[1] = input[1] - carry; | ||
| 
											12 years ago
										 |   } | ||
|  | 
 | ||
| 
											11 years ago
										 |   /* All input[i] are now non-negative. However, there might be values between
 | ||
|  |    * 2^25 and 2^26 in a limb which is, nominally, 25 bits wide. */ | ||
|  |   for (j = 0; j < 2; j++) { | ||
|  |     for (i = 0; i < 9; i++) { | ||
|  |       if ((i & 1) == 1) { | ||
|  |         const s32 carry = input[i] >> 25; | ||
|  |         input[i] &= 0x1ffffff; | ||
|  |         input[i+1] += carry; | ||
|  |       } else { | ||
|  |         const s32 carry = input[i] >> 26; | ||
|  |         input[i] &= 0x3ffffff; | ||
|  |         input[i+1] += carry; | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     { | ||
|  |       const s32 carry = input[9] >> 25; | ||
|  |       input[9] &= 0x1ffffff; | ||
|  |       input[0] += 19*carry; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* If the first carry-chain pass, just above, ended up with a carry from
 | ||
|  |    * input[9], and that caused input[0] to be out-of-bounds, then input[0] was | ||
|  |    * < 2^26 + 2*19, because the carry was, at most, two. | ||
|  |    * | ||
|  |    * If the second pass carried from input[9] again then input[0] is < 2*19 and | ||
|  |    * the input[9] -> input[0] carry didn't push input[0] out of bounds. */ | ||
|  | 
 | ||
|  |   /* It still remains the case that input might be between 2^255-19 and 2^255.
 | ||
|  |    * In this case, input[1..9] must take their maximum value and input[0] must | ||
|  |    * be >= (2^255-19) & 0x3ffffff, which is 0x3ffffed. */ | ||
|  |   mask = s32_gte(input[0], 0x3ffffed); | ||
|  |   for (i = 1; i < 10; i++) { | ||
|  |     if ((i & 1) == 1) { | ||
|  |       mask &= s32_eq(input[i], 0x1ffffff); | ||
|  |     } else { | ||
|  |       mask &= s32_eq(input[i], 0x3ffffff); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus
 | ||
|  |    * this conditionally subtracts 2^255-19. */ | ||
|  |   input[0] -= mask & 0x3ffffed; | ||
|  | 
 | ||
|  |   for (i = 1; i < 10; i++) { | ||
|  |     if ((i & 1) == 1) { | ||
|  |       input[i] -= mask & 0x1ffffff; | ||
|  |     } else { | ||
|  |       input[i] -= mask & 0x3ffffff; | ||
|  |     } | ||
|  |   } | ||
| 
											12 years ago
										 | 
 | ||
|  |   input[1] <<= 2; | ||
|  |   input[2] <<= 3; | ||
|  |   input[3] <<= 5; | ||
|  |   input[4] <<= 6; | ||
|  |   input[6] <<= 1; | ||
|  |   input[7] <<= 3; | ||
|  |   input[8] <<= 4; | ||
|  |   input[9] <<= 6; | ||
|  | #define F(i, s) \
 | ||
|  |   output[s+0] |=  input[i] & 0xff; \ | ||
|  |   output[s+1]  = (input[i] >> 8) & 0xff; \ | ||
|  |   output[s+2]  = (input[i] >> 16) & 0xff; \ | ||
|  |   output[s+3]  = (input[i] >> 24) & 0xff; | ||
|  |   output[0] = 0; | ||
|  |   output[16] = 0; | ||
|  |   F(0,0); | ||
|  |   F(1,3); | ||
|  |   F(2,6); | ||
|  |   F(3,9); | ||
|  |   F(4,12); | ||
|  |   F(5,16); | ||
|  |   F(6,19); | ||
|  |   F(7,22); | ||
|  |   F(8,25); | ||
|  |   F(9,28); | ||
|  | #undef F
 | ||
|  | } | ||
|  | 
 | ||
|  | /* Input: Q, Q', Q-Q'
 | ||
|  |  * Output: 2Q, Q+Q' | ||
|  |  * | ||
|  |  *   x2 z3: long form | ||
|  |  *   x3 z3: long form | ||
|  |  *   x z: short form, destroyed | ||
|  |  *   xprime zprime: short form, destroyed | ||
|  |  *   qmqp: short form, preserved | ||
| 
											11 years ago
										 |  * | ||
|  |  * On entry and exit, the absolute value of the limbs of all inputs and outputs | ||
|  |  * are < 2^26. */ | ||
| 
											12 years ago
										 | static void fmonty(limb *x2, limb *z2,  /* output 2Q */ | ||
|  |                    limb *x3, limb *z3,  /* output Q + Q' */ | ||
|  |                    limb *x, limb *z,    /* input Q */ | ||
|  |                    limb *xprime, limb *zprime,  /* input Q' */ | ||
|  |                    const limb *qmqp /* input Q - Q' */) { | ||
|  |   limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19], | ||
|  |         zzprime[19], zzzprime[19], xxxprime[19]; | ||
|  | 
 | ||
|  |   memcpy(origx, x, 10 * sizeof(limb)); | ||
|  |   fsum(x, z); | ||
| 
											11 years ago
										 |   /* |x[i]| < 2^27 */ | ||
|  |   fdifference(z, origx);  /* does x - z */ | ||
|  |   /* |z[i]| < 2^27 */ | ||
| 
											12 years ago
										 | 
 | ||
|  |   memcpy(origxprime, xprime, sizeof(limb) * 10); | ||
|  |   fsum(xprime, zprime); | ||
| 
											11 years ago
										 |   /* |xprime[i]| < 2^27 */ | ||
| 
											12 years ago
										 |   fdifference(zprime, origxprime); | ||
| 
											11 years ago
										 |   /* |zprime[i]| < 2^27 */ | ||
| 
											12 years ago
										 |   fproduct(xxprime, xprime, z); | ||
| 
											11 years ago
										 |   /* |xxprime[i]| < 14*2^54: the largest product of two limbs will be <
 | ||
|  |    * 2^(27+27) and fproduct adds together, at most, 14 of those products. | ||
|  |    * (Approximating that to 2^58 doesn't work out.) */ | ||
| 
											12 years ago
										 |   fproduct(zzprime, x, zprime); | ||
| 
											11 years ago
										 |   /* |zzprime[i]| < 14*2^54 */ | ||
| 
											12 years ago
										 |   freduce_degree(xxprime); | ||
|  |   freduce_coefficients(xxprime); | ||
| 
											11 years ago
										 |   /* |xxprime[i]| < 2^26 */ | ||
| 
											12 years ago
										 |   freduce_degree(zzprime); | ||
|  |   freduce_coefficients(zzprime); | ||
| 
											11 years ago
										 |   /* |zzprime[i]| < 2^26 */ | ||
| 
											12 years ago
										 |   memcpy(origxprime, xxprime, sizeof(limb) * 10); | ||
|  |   fsum(xxprime, zzprime); | ||
| 
											11 years ago
										 |   /* |xxprime[i]| < 2^27 */ | ||
| 
											12 years ago
										 |   fdifference(zzprime, origxprime); | ||
| 
											11 years ago
										 |   /* |zzprime[i]| < 2^27 */ | ||
| 
											12 years ago
										 |   fsquare(xxxprime, xxprime); | ||
| 
											11 years ago
										 |   /* |xxxprime[i]| < 2^26 */ | ||
| 
											12 years ago
										 |   fsquare(zzzprime, zzprime); | ||
| 
											11 years ago
										 |   /* |zzzprime[i]| < 2^26 */ | ||
| 
											12 years ago
										 |   fproduct(zzprime, zzzprime, qmqp); | ||
| 
											11 years ago
										 |   /* |zzprime[i]| < 14*2^52 */ | ||
| 
											12 years ago
										 |   freduce_degree(zzprime); | ||
|  |   freduce_coefficients(zzprime); | ||
| 
											11 years ago
										 |   /* |zzprime[i]| < 2^26 */ | ||
| 
											12 years ago
										 |   memcpy(x3, xxxprime, sizeof(limb) * 10); | ||
|  |   memcpy(z3, zzprime, sizeof(limb) * 10); | ||
|  | 
 | ||
|  |   fsquare(xx, x); | ||
| 
											11 years ago
										 |   /* |xx[i]| < 2^26 */ | ||
| 
											12 years ago
										 |   fsquare(zz, z); | ||
| 
											11 years ago
										 |   /* |zz[i]| < 2^26 */ | ||
| 
											12 years ago
										 |   fproduct(x2, xx, zz); | ||
| 
											11 years ago
										 |   /* |x2[i]| < 14*2^52 */ | ||
| 
											12 years ago
										 |   freduce_degree(x2); | ||
|  |   freduce_coefficients(x2); | ||
| 
											11 years ago
										 |   /* |x2[i]| < 2^26 */ | ||
| 
											12 years ago
										 |   fdifference(zz, xx);  // does zz = xx - zz
 | ||
| 
											11 years ago
										 |   /* |zz[i]| < 2^27 */ | ||
| 
											12 years ago
										 |   memset(zzz + 10, 0, sizeof(limb) * 9); | ||
|  |   fscalar_product(zzz, zz, 121665); | ||
| 
											11 years ago
										 |   /* |zzz[i]| < 2^(27+17) */ | ||
| 
											12 years ago
										 |   /* No need to call freduce_degree here:
 | ||
|  |      fscalar_product doesn't increase the degree of its input. */ | ||
|  |   freduce_coefficients(zzz); | ||
| 
											11 years ago
										 |   /* |zzz[i]| < 2^26 */ | ||
| 
											12 years ago
										 |   fsum(zzz, xx); | ||
| 
											11 years ago
										 |   /* |zzz[i]| < 2^27 */ | ||
| 
											12 years ago
										 |   fproduct(z2, zz, zzz); | ||
| 
											11 years ago
										 |   /* |z2[i]| < 14*2^(26+27) */ | ||
| 
											12 years ago
										 |   freduce_degree(z2); | ||
|  |   freduce_coefficients(z2); | ||
| 
											11 years ago
										 |   /* |z2|i| < 2^26 */ | ||
| 
											12 years ago
										 | } | ||
|  | 
 | ||
|  | /* Conditionally swap two reduced-form limb arrays if 'iswap' is 1, but leave
 | ||
|  |  * them unchanged if 'iswap' is 0.  Runs in data-invariant time to avoid | ||
|  |  * side-channel attacks. | ||
|  |  * | ||
|  |  * NOTE that this function requires that 'iswap' be 1 or 0; other values give | ||
|  |  * wrong results.  Also, the two limb arrays must be in reduced-coefficient, | ||
|  |  * reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped, | ||
|  |  * and all all values in a[0..9],b[0..9] must have magnitude less than | ||
| 
											11 years ago
										 |  * INT32_MAX. */ | ||
| 
											12 years ago
										 | static void | ||
|  | swap_conditional(limb a[19], limb b[19], limb iswap) { | ||
|  |   unsigned i; | ||
|  |   const s32 swap = (s32) -iswap; | ||
|  | 
 | ||
|  |   for (i = 0; i < 10; ++i) { | ||
|  |     const s32 x = swap & ( ((s32)a[i]) ^ ((s32)b[i]) ); | ||
|  |     a[i] = ((s32)a[i]) ^ x; | ||
|  |     b[i] = ((s32)b[i]) ^ x; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | /* Calculates nQ where Q is the x-coordinate of a point on the curve
 | ||
|  |  * | ||
|  |  *   resultx/resultz: the x coordinate of the resulting curve point (short form) | ||
|  |  *   n: a little endian, 32-byte number | ||
| 
											11 years ago
										 |  *   q: a point of the curve (short form) */ | ||
| 
											12 years ago
										 | static void | ||
|  | cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) { | ||
|  |   limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0}; | ||
|  |   limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t; | ||
|  |   limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1}; | ||
|  |   limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h; | ||
|  | 
 | ||
|  |   unsigned i, j; | ||
|  | 
 | ||
|  |   memcpy(nqpqx, q, sizeof(limb) * 10); | ||
|  | 
 | ||
|  |   for (i = 0; i < 32; ++i) { | ||
|  |     u8 byte = n[31 - i]; | ||
|  |     for (j = 0; j < 8; ++j) { | ||
|  |       const limb bit = byte >> 7; | ||
|  | 
 | ||
|  |       swap_conditional(nqx, nqpqx, bit); | ||
|  |       swap_conditional(nqz, nqpqz, bit); | ||
|  |       fmonty(nqx2, nqz2, | ||
|  |              nqpqx2, nqpqz2, | ||
|  |              nqx, nqz, | ||
|  |              nqpqx, nqpqz, | ||
|  |              q); | ||
|  |       swap_conditional(nqx2, nqpqx2, bit); | ||
|  |       swap_conditional(nqz2, nqpqz2, bit); | ||
|  | 
 | ||
|  |       t = nqx; | ||
|  |       nqx = nqx2; | ||
|  |       nqx2 = t; | ||
|  |       t = nqz; | ||
|  |       nqz = nqz2; | ||
|  |       nqz2 = t; | ||
|  |       t = nqpqx; | ||
|  |       nqpqx = nqpqx2; | ||
|  |       nqpqx2 = t; | ||
|  |       t = nqpqz; | ||
|  |       nqpqz = nqpqz2; | ||
|  |       nqpqz2 = t; | ||
|  | 
 | ||
|  |       byte <<= 1; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   memcpy(resultx, nqx, sizeof(limb) * 10); | ||
|  |   memcpy(resultz, nqz, sizeof(limb) * 10); | ||
|  | } | ||
|  | 
 | ||
|  | // -----------------------------------------------------------------------------
 | ||
|  | // Shamelessly copied from djb's code
 | ||
|  | // -----------------------------------------------------------------------------
 | ||
|  | static void | ||
|  | crecip(limb *out, const limb *z) { | ||
|  |   limb z2[10]; | ||
|  |   limb z9[10]; | ||
|  |   limb z11[10]; | ||
|  |   limb z2_5_0[10]; | ||
|  |   limb z2_10_0[10]; | ||
|  |   limb z2_20_0[10]; | ||
|  |   limb z2_50_0[10]; | ||
|  |   limb z2_100_0[10]; | ||
|  |   limb t0[10]; | ||
|  |   limb t1[10]; | ||
|  |   int i; | ||
|  | 
 | ||
|  |   /* 2 */ fsquare(z2,z); | ||
|  |   /* 4 */ fsquare(t1,z2); | ||
|  |   /* 8 */ fsquare(t0,t1); | ||
|  |   /* 9 */ fmul(z9,t0,z); | ||
|  |   /* 11 */ fmul(z11,z9,z2); | ||
|  |   /* 22 */ fsquare(t0,z11); | ||
|  |   /* 2^5 - 2^0 = 31 */ fmul(z2_5_0,t0,z9); | ||
|  | 
 | ||
|  |   /* 2^6 - 2^1 */ fsquare(t0,z2_5_0); | ||
|  |   /* 2^7 - 2^2 */ fsquare(t1,t0); | ||
|  |   /* 2^8 - 2^3 */ fsquare(t0,t1); | ||
|  |   /* 2^9 - 2^4 */ fsquare(t1,t0); | ||
|  |   /* 2^10 - 2^5 */ fsquare(t0,t1); | ||
|  |   /* 2^10 - 2^0 */ fmul(z2_10_0,t0,z2_5_0); | ||
|  | 
 | ||
|  |   /* 2^11 - 2^1 */ fsquare(t0,z2_10_0); | ||
|  |   /* 2^12 - 2^2 */ fsquare(t1,t0); | ||
|  |   /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } | ||
|  |   /* 2^20 - 2^0 */ fmul(z2_20_0,t1,z2_10_0); | ||
|  | 
 | ||
|  |   /* 2^21 - 2^1 */ fsquare(t0,z2_20_0); | ||
|  |   /* 2^22 - 2^2 */ fsquare(t1,t0); | ||
|  |   /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } | ||
|  |   /* 2^40 - 2^0 */ fmul(t0,t1,z2_20_0); | ||
|  | 
 | ||
|  |   /* 2^41 - 2^1 */ fsquare(t1,t0); | ||
|  |   /* 2^42 - 2^2 */ fsquare(t0,t1); | ||
|  |   /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t1,t0); fsquare(t0,t1); } | ||
|  |   /* 2^50 - 2^0 */ fmul(z2_50_0,t0,z2_10_0); | ||
|  | 
 | ||
|  |   /* 2^51 - 2^1 */ fsquare(t0,z2_50_0); | ||
|  |   /* 2^52 - 2^2 */ fsquare(t1,t0); | ||
|  |   /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } | ||
|  |   /* 2^100 - 2^0 */ fmul(z2_100_0,t1,z2_50_0); | ||
|  | 
 | ||
|  |   /* 2^101 - 2^1 */ fsquare(t1,z2_100_0); | ||
|  |   /* 2^102 - 2^2 */ fsquare(t0,t1); | ||
|  |   /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fsquare(t1,t0); fsquare(t0,t1); } | ||
|  |   /* 2^200 - 2^0 */ fmul(t1,t0,z2_100_0); | ||
|  | 
 | ||
|  |   /* 2^201 - 2^1 */ fsquare(t0,t1); | ||
|  |   /* 2^202 - 2^2 */ fsquare(t1,t0); | ||
|  |   /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } | ||
|  |   /* 2^250 - 2^0 */ fmul(t0,t1,z2_50_0); | ||
|  | 
 | ||
|  |   /* 2^251 - 2^1 */ fsquare(t1,t0); | ||
|  |   /* 2^252 - 2^2 */ fsquare(t0,t1); | ||
|  |   /* 2^253 - 2^3 */ fsquare(t1,t0); | ||
|  |   /* 2^254 - 2^4 */ fsquare(t0,t1); | ||
|  |   /* 2^255 - 2^5 */ fsquare(t1,t0); | ||
|  |   /* 2^255 - 21 */ fmul(out,t1,z11); | ||
|  | } | ||
|  | 
 | ||
|  | int | ||
|  | curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) { | ||
|  |   limb bp[10], x[10], z[11], zmone[10]; | ||
|  |   uint8_t e[32]; | ||
|  |   int i; | ||
|  | 
 | ||
|  |   for (i = 0; i < 32; ++i) e[i] = secret[i]; | ||
| 
											11 years ago
										 | //  e[0] &= 248;
 | ||
|  | //  e[31] &= 127;
 | ||
|  | //  e[31] |= 64;
 | ||
| 
											12 years ago
										 | 
 | ||
|  |   fexpand(bp, basepoint); | ||
|  |   cmult(x, z, e, bp); | ||
|  |   crecip(zmone, z); | ||
|  |   fmul(z, x, zmone); | ||
|  |   fcontract(mypublic, z); | ||
|  |   return 0; | ||
|  | } |